17 research outputs found

    Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states

    Get PDF
    Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the mechanisms underlying the dynamical stability of brain states using a novel off-line in silico perturbation protocol. We first adjust a whole-brain computational model to the basal dynamics of wakefulness and deep sleep recorded with fMRI in two independent human fMRI datasets. Then, the models of sleep and awake brain states are perturbed using two distinct multifocal protocols either promoting or disrupting synchronization in randomly selected brain areas. Once perturbation is halted, we use a novel measure, the Perturbative Integration Latency Index (PILI), to evaluate the recovery back to baseline. We find a clear distinction between models, consistently showing larger PILI in wakefulness than in deep sleep, corroborating previous experimental findings. In the models, larger recoveries are associated to a critical slowing down induced by a shift in the model's operation point, indicating that the awake brain operates further from a stable equilibrium than deep sleep. This novel approach opens up for a new level of artificial perturbative studies unconstrained by ethical limitations allowing for a deeper investigation of the dynamical properties of different brain states.GD was supported by the ERC Advanced Grant: DYSTRUCTURE (n. 295129), by the Spanish Research Project SAF2010-16085 and the FP7-ICT BrainScales. MLK and JC were supported by the ERC Consolidator Grant: CAREGIVING (n. 615539) and Center for Music in the Brain, funded by the Danish National Research Foundation (DNRF117). JC was supported under the project NORTE-01-0145-FEDER-000023, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER).info:eu-repo/semantics/publishedVersio

    Chromatin: a tunable spring at work inside chromosomes

    Full text link
    This paper focuses on mechanical aspects of chromatin biological functioning. Within a basic geometric modeling of the chromatin assembly, we give for the first time the complete set of elastic constants (twist and bend persistence lengths, stretch modulus and twist-stretch coupling constant) of the so-called 30-nm chromatin fiber, in terms of DNA elastic properties and geometric properties of the fiber assembly. The computation naturally embeds the fiber within a current analytical model known as the ``extensible worm-like rope'', allowing a straightforward prediction of the force-extension curves. We show that these elastic constants are strongly sensitive to the linker length, up to 1 bp, or equivalently to its twist, and might locally reach very low values, yielding a highly flexible and extensible domain in the fiber. In particular, the twist-stretch coupling constant, reflecting the chirality of the chromatin fiber, exhibits steep variations and sign changes when the linker length is varied. We argue that this tunable elasticity might be a key feature for chromatin function, for instance in the initiation and regulation of transcription.Comment: 38 pages 15 figure

    Natural and anthropogenic changes to mangrove distributions in the Pioneer River Estuary (QLD, Australia)

    Get PDF
    We analyzed a time series of aerial photographs and Landsat satellite imagery of the Pioneer River Estuary (near Mackay, Queensland, Australia) to document both natural and anthropogenic changes in the area of mangroves available to filter river runoff between 1948 and 2002. Over 54 years, there was a net loss of 137 ha (22%) of tidal mangroves during four successive periods that were characterized by different driving mechanisms: (1) little net change (1948– 1962); (2) net gain from rapid mangrove expansion (1962–1972); (3) net loss from clearing and tidal isolation (1972–1991); and (4) net loss from a severe species-specific dieback affecting over 50% of remaining mangrove cover (1991–2002). Manual digitization of aerial photographs was accurate for mapping changes in the boundaries of mangrove distributions, but this technique underestimated the total loss due to dieback. Regions of mangrove dieback were identified and mapped more accurately and efficiently after applying the Normalized Difference Vegetation Index (NDVI) to Landsat Thematic Mapper satellite imagery, and then monitoring changes to the index over time. These remote sensing techniques to map and monitor mangrove changes are important for identifying habitat degradation, both spatially and temporally, in order to prioritize restoration for management of estuarine and adjacent marine ecosystems

    Structural and functional stabilization of protein entities: state-of-the-art

    Get PDF
    Within the context of biomedicine and pharmaceutical sciences, the issue of (therapeutic) protein stabilization assumes particular relevance. Stabilization of protein and protein-like molecules translates into preservation of both structure and functionality during storage and/or targeting, and such stabilization is mostly attained through establishment of a thermodynamic equilibrium with the (micro)environment. The basic thermodynamic principles that govern protein structural transitions and the interactions of the protein molecule with its (micro)environment are, therefore, tackled in a systematic fashion. Highlights are given to the major classes of (bio)therapeutic molecules, viz. enzymes, recombinant proteins, (macro)peptides, (monoclonal) antibodies and bacteriophages. Modification of the microenvironment of the biomolecule via multipoint covalent attachment onto a solid surface followed by hydrophilic polymer co-immobilization, or physical containment within nanocarriers, are some of the (latest) strategies discussed aiming at full structural and functional stabilization of said biomolecules.Financial support to Victor M. Balcao, via an Invited Research Scientist fellowship (FAPESP Ref. No. 2011/51077-8), and project funding (FAPESP Ref. No. 2013/03181-6, Project PneumoPhageKill) by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, Sao Paulo, Brazil), is hereby gratefully acknowledged. The authors are also grateful to Claudio M. Barroso (BSc.), Graphic Designer at University of Sorocaba (UNISO), for computer-designing the schemes/drawings integrating this review paper

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    An edge-centric perspective on the human connectome: Link communities in the brain

    No full text
    Brain function depends on efficient processing and integration of information within a complex network of neural interactions, known as the connectome. An important aspect of connectome architecture is the existence of community structure, providing an anatomical basis for the occurrence of functional specialization. Typically, communities are defined as groups of densely connected network nodes, representing clusters of brain regions. Looking at the connectome from a different perspective, instead focusing on the interconnecting links or edges, we find that the white matter pathways between brain regions also exhibit community structure. Eleven link communities were identified: five spanning through the midline fissure, three through the left hemisphere and three through the right hemisphere. We show that these link communities are consistently identifiable and investigate the network characteristics of their underlying white matter pathways. Furthermore, examination of the relationship between link communities and brain regions revealed that the majority of brain regions participate in multiple link communities. In particular, the highly connected and central hub regions showed a rich level of community participation, supporting the notion that these hubs play a pivotal role as confluence zones in which neural information from different domains merges

    Breakdown of whole-brain dynamics in preterm-born children

    No full text
    The brain operates at a critical point that is balanced between order and disorder. Even during rest, unstable periods of random behavior are interspersed with stable periods of balanced activity patterns that support optimal information processing. Being born preterm may cause deviations from this normal pattern of development. We compared 33 extremely preterm (EPT) children born at < 27 weeks of gestation and 28 full-term controls. Two approaches were adopted in both groups, when they were 10 years of age, using structural and functional brain magnetic resonance imaging data. The first was using a novel intrinsic ignition analysis to study the ability of the areas of the brain to propagate neural activity. The second was a whole-brain Hopf model, to define the level of stability, desynchronization, or criticality of the brain. EPT-born children exhibited fewer intrinsic ignition events than controls; nodes were related to less sophisticated aspects of cognitive control, and there was a different hierarchy pattern in the propagation of information and suboptimal synchronicity and criticality. The largest differences were found in brain nodes belonging to the rich-club architecture. These results provide important insights into the neural substrates underlying brain reorganization and neurodevelopmental impairments related to prematurity.Swedish Medical Research Council (grant numbers 523-2011-3981, 2017-03043); the regional agreement on medical training and clinical research (grant number, ALF SLL 20170243) between Stockholm County Council and the Karolinska Institutet; European Union Seventh Framework Project (grant number 223767); Swedish Order of Freemasons in Stockholm; Swedish Medical Society; Swedish Brain Foundation (grant number FO2017-0131); Sällskapet Barnavård; Linnèa och Josef Carlssons Stifelse’ Erik and Edith Fernström Stiftelse; Ishizu Matsumura Foundation

    Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson’s disease

    No full text
    Deep brain stimulation (DBS) for Parkinson’s disease is a highly effective treatment in controlling otherwise debilitating symptoms. Yet the underlying brain mechanisms are currently not well understood. Whole-brain computational modeling was used to disclose the effects of DBS during resting-state functional Magnetic Resonance Imaging in ten patients with Parkinson’s disease. Specifically, we explored the local and global impact that DBS has in creating asynchronous, stable or critical oscillatory conditions using a supercritical bifurcation model. We found that DBS shifts global brain dynamics of patients towards a Healthy regime. This effect was more pronounced in very specific brain areas such as the thalamus, globus pallidus and orbitofrontal regions of the right hemisphere (with the left hemisphere not analyzed given artifacts arising from the electrode lead). Global aspects of integration and synchronization were also rebalanced. Empirically, we found higher communicability and coherence brain measures during DBS-ON compared to DBS-OFF. Finally, using our model as a framework, artificial in silico DBS was applied to find potential alternative target areas for stimulation and whole-brain rebalancing. These results offer important insights into the underlying large-scale effects of DBS as well as in finding novel stimulation targets, which may offer a route to more efficacious treatments.In this work, Gustavo Deco is supported by the ERC Advanced Grant: DYSTRUCTURE (n. 295129), by the Spanish Research Project PSI2016-75688-P and by the the European Union’s Horizon 2020 research and innovation programme under grant agreement n. 720270 (HBP SGA1). Morten Kringelbach is supported by the ERC Consolidator Grant CAREGIVING (n. 615539) and the Center for Music in the Brain, funded by the Danish National Research Foundation (DNRF117). Victor M Saenger is supported by the Research Personnel Training program PSI2013-42091-P funded by the Spanish Ministry of Economy and Competitiveness
    corecore